Discrete valuation rings (DVRs)

Before we can go into more depth about the geometry of a curve hear a point, we need some more algebra.

<u>Prop/Def</u>: Let R be an integral domain that is not a field. Then R is a <u>DV</u>R if it satisfies either of the two equivalent properties:

- 1.) R is Noetherian and local and its maximal ideal is principal.
- 2.) There is an irreducible $t \in \mathbb{R}$ s.t. every nonzero $z \in \mathbb{R}$ can be written uniquely as $z = ut^n$, u = unit, $n \in \mathbb{R}_{\geq 0}$.

$$Pf: 1.) \implies 2.$$
: let $m = (t)$ be the maximal ideal.

Suppose ut = vt, u and v units and n≥m.

Then $ut^{n-m} = V$, so t^{n-m} is a unit, so n=m, u=V. This proves uniqueness.

Now let ZER be nonzero. If ZIS a unit, Z=Zt°, and we're done. Otherwise, $z \in (t)$, so $z = z_1 t$. If z_1 is a unit, we're done. Otherwise $z_1 = z_2 t$.

Continuing this process, we get Z1, Z2, ... w/ Zn=Zn+1t.

If some zi is a unit then z=zit, and we're done.

Otherwise $(z_1) \subseteq (z_2) \subseteq ...$, which stabilizes since R is Noetherian.

$$\Rightarrow$$
 $(z_n) = (z_{n+1})$ some h , so $z_{n+1} = V z_n$, some $V \in \mathbb{R}$.

so
$$Z_n = Z_{n+1}t = VZ_nt \implies Z_n(I-Vt) = 0 \implies Vt = I, but$$

t isn't a unit, so we get a contradiction.

 $2.) \rightarrow 1.$ By 2.), m = (t) is exactly the set of nohumits, so R is local, and the max'l ideal is principal.

Thus, we just need to show R is Noetherian. Suppose $I \subseteq R$ is an ideal. Let $h \ge 0$ be the minimum integer s.t. $t^{n} \in I$. Thus $(t^{n}) \subseteq I$, and if $z \in I$, $z = ut^{m} \Rightarrow t^{m} \in I$ so $m \ge h$, so $z \in (t^{n})$. Thus $I = (t^{n})$. \Box

Def: t in 2.) is called a <u>uniformizing parameter</u> for R. It is fixed up to multiplication by a unit. <u>Remark</u>: From the proof, we see that if R is a DVR W/ uniformizing parameter t, then the ideals are exactly $(1)\supset(t)\supset(t^3)\supset\ldots$

Ex: let
$$a \in A'$$
. Then $\mathcal{O}_{a}(A') - \left\{ \frac{f}{g} \right\} = \left\{ \frac{f}{g} \in k(A'), g(a) \neq 0 \right\}$

The maximal ideal of
$$\mathcal{O}_{a}(A^{t}) = \{ \text{non-units} \} = (x - a) \}$$

So $\mathcal{O}_{a}(A^{t})$ is a DVR w/ uniformizing parameter x-a.

Ex: The nonunits in
$$\mathcal{O}_{(0,0)}(A^2)$$
 are of the form $\frac{f}{g}$, where $f(0,0) = 0$. i.e. f has O constant term. Thus, $m_{(0,0)}(A^2) = (x,y)$
But (x,y) is not principal, so $\mathcal{O}_{(0,0)}(A^2)$ is not a DVR, even though it's local.

Order functions

Let R be a DVR, and fix a uniformizing parameter t.

Let K be the field of fractions of R. Then for $\frac{f}{g} \in K$, $f=ut^n$, $g=vt^m$, $\frac{f}{g}=\frac{u}{v}t^{n-m}$, $\frac{u}{v}\in R$ a unit. In fact (exercise) every element $\frac{\delta_{k}}{2} \in K$ has a unique expression ut^n , u a unit In R, $n \in \mathbb{Z}$.

Def: h is the order of Z, denoted ord (Z).

Define $ord(0) = \infty$. (Exer: ord is independent of the choice of uniformizing parameter.)

Then
$$R = \{z \in K \mid ord(z) \ge 0\}$$
, and the max'l ideal is
 $M = \{z \in K \mid ord(z) \ge 0\} \subseteq R$.
Exer: $ord(ab) = ord(a) + ord(b)$
and $ord(a+b) \ge min(ord(a), ord(b))$.

Quotients of DVRs

Ex: let
$$R = O_o(A^1)$$
. Max'l ideal = $m = (\pi)$.

let $M = \frac{(\pi^n)}{(\pi^{n+1})} \subseteq \frac{R}{(\pi^{n+1})}$. This is a k-vector space since $k \subseteq R$.

Then every
$$z \in M$$
 can be written as $\frac{x^{h}}{f(x)}$, $f(o) \neq 0$.

Note that $f(x)x^{n} = f(0)x^{n}$, since higher powers of χ vanish.

$$\implies z = \frac{x^{n}}{f(x)} = \left(\frac{1}{f(0)}\right) x^{n} \quad \text{so} \quad M \quad \text{is } \left|-\text{dimensional}\right|$$

Let R be a DVR containing a field k s.t. The composition

$$k \rightarrow R \rightarrow R'_{m}$$

is an isomorphism.
Let $t \in R$ be a uniformizing parameter. Consider $z \in m^{n}$.
Then $z = ut^{n}$, u a unit.
Then $the image of u$ in R'_{m} is nonzero, to $\exists \lambda \in k$ s.t.
 $d(\lambda) = d(u)$.
Thus $u = \lambda + at \in R$, some $a \in R$.
 $\Rightarrow z = \lambda t^{n} + a t^{n+1}$.
But then if we look at $\overline{z} \in m^{n}_{m} n+1$, we get $\overline{z} = \lambda \overline{t}^{n}$.
Thus, $\dim_{R}(m^{n}_{m}) = 1$.
Since $\dim_{R}(R'_{m}) = 1$, by induction, we get the following:
 $v \rightarrow m^{n}_{m} n+1 \rightarrow R'_{m} m \rightarrow R'_{m} n \rightarrow 0$
 $\dim_{R}(R'_{m}) = 1$, by induction $m = R'_{m} n \rightarrow 0$
 $\dim_{R}(R'_{m}) = 1$, by induction $m = R'_{m} n \rightarrow 0$
 $\dim_{R}(R'_{m}) = 1$, by induction $m = R'_{m} n \rightarrow 0$

Note:
$$ord(z) = n \iff (z) = m^{h}$$
, so $ord(z) = dim_{\mu} \left(\frac{R}{2} \right)$.

Multiplicities, revisited

let f be an irreducible curve. Denote: $\lfloor (\sharp) := \lfloor (\Lambda(\sharp))^{*} \mathbb{Q}^{\mathsf{b}}(\sharp) := \mathbb{Q}^{\mathsf{b}}(\Lambda(\sharp))^{*} \mathbb{P}(\sharp) := \mathbb{P}(\Lambda(\sharp))^{*}$ Question: If Pisa point on f, when is $O_p(f)$ a DVR? $E_{x}: f = y - x^{2}$. P = (0, 0). Then $O_p(f) = \left\{ \frac{h}{g} \mid g(0,0) \neq 0 \right\} \subseteq k(f).$ $\mathcal{M}_{p}(f) = (x, y) = (x, x^{2}) = (x), \text{ so}$ $\mathcal{O}_{p}(f) \text{ is a DVR.}$ Ex: $f = x^3 - y^2$, P = (0, 0). In this case the maximal ideal is $m_p(f) = (x, y)$, which is not principal (exercise) $\Rightarrow \mathcal{O}_{p}(f)$ is not a DVR. Thm: let P be a point on an irreducible curve f. Then for n>>0, $m_p(f) = dim_k \begin{pmatrix} m_p^{n} & n+l \\ m_p \end{pmatrix}$ max'l ideal in Op(f) 1 multiplicity

Pf sketch: Consider the short exact sequence

$$0 \rightarrow \frac{m^{h}}{m^{n+1}} \rightarrow \frac{\mathcal{O}_{P}}{m^{n+1}} \rightarrow \frac{\mathcal{O}_{P}}{m^{n}} \rightarrow 0$$

Claim: $\dim_{k} \left(\binom{m}{m} \right) = n m_{p}(f) + s$, s a constant, as long as $n \ge m_{p}(f)$. (see Thm 2 in section 3.2 of Fulton for pf.)

Then for
$$n >> 0$$
, $\dim_{k} \binom{m^{n}}{m^{n+1}} = (n+1)m_{p}(f) + s - nm_{p}(f) - s = m_{p}(f)$. []

So if
$$\mathcal{O}_p(f)$$
 is a DVR, $m_p(f) = \dim(\frac{m^m}{m^{n+1}}) = 1$, so P is
a simple point. In fact the converse holds:

Thm: Let
$$f$$
 be an irreducible plane curve, $P \in V(f)$. Then
 P is a simple point of $f \iff O_p(f)$ is a DVR.

$$(=)$$
 Assume P is a simple point. By changing coordinates,
we can assume $P = (0,0)$ and y is the tangent line.

We want to show that the maximal ideal
$$m := m_p(f) = (\pi)$$
.
Note that $m = (\pi, y)$.

$$f = yg - x^2h$$
, where $g = | +higher + terms$, $h \in k[x]$

let P be a simple point on an irreducible curve f.

The order function at simple points

Then $\mathcal{O}_{p}(f)$ is a DVR, so there is an order function $\operatorname{ord}_{p}^{*}$ on the field of fractions of $\mathcal{O}_{p}(f)$, which is equal to k(f). (Recall $\Gamma(f) \subseteq \mathcal{O}_{p}(f) \subseteq k(f)$)

let L be a line through P.

If L is not tangent to f at P, then $L \in O_p(f)$ is a uniformizing parameter, so $\operatorname{ord}_p^f(L) = 1$.

If L is tangent to f at P, we can assume we've in the situation where L=y and $y=\frac{x^2h}{g}$.

 $g(P) \neq 0$, so x doesn't divide g, while x may divide h, so $\operatorname{ord}_{p}^{f}(L) \geq 2$.

To summarize...

Thm: let P be a simple point on an irreducible surve f. Let L be a line.

1.)
$$\operatorname{ord}_{p}^{f}(L) = 0 \iff L \operatorname{doesn't} \operatorname{contain} p$$

2.) $\operatorname{ord}_{p}^{f}(L) = 1 \iff L$ passes through P but is not tangent to f at P. 3.) $\operatorname{ord}_{p}^{f}(L) \ge 2 \iff L$ is tangent to f at P.